◆编后漫笔

前面谈到三角函数的定义:在单位圆上,动点P (x,y)以A(1,0)为起点做逆时针方向的单位速率旋 转,其横坐标x、纵坐标y都是时间t的函数,分别定义 为余弦函数 cost 和正弦函数 sint. 可以想象, 因为 cost 和 sint 是单位圆上同一点的横、纵坐标, 所以它们一 定有内在联系;因为点 $P(\cos t, \sin t)$ 随t的变化而在单 位圆上旋转,所以余弦函数、正弦函数的性质一定与 圆的性质有关,甚至可以设想,利用圆的性质可以得 出三角函数的性质. 我认为,这里的"想象""设想"与 发现和提出问题有关. 因此, 在具体展开三角函数性 质的研究之前,先引导学生设想三角函数的性质与圆 的几何性质之间可能的关系,再让他们借助圆的几何 性质猜想三角函数的性质,对于培养学生的直观想 象、数学推理(归纳推理、类比推理)等核心素养,将会 大有裨益. 我认为,这是诱导公式的育人价值所在.

- 1. 在建立两个函数内在联系的想法指引下, 过 $P(\cos t, \sin t)$ 作 $PM \perp Ox, M$ 为垂足,则 $\triangle OMP$ 是直 角三角形. 由坐标的定义有 OM=cost, MP=sint, OP=1,
- 2. 设单位圆上的动点从A(1,0)出发作逆时针旋 转,经过时刻t到达点 $P(\cos t, \sin t)$,然后继续逆时针 旋转一周到达点 $T_1(\cos t_1, \sin t_1)$. 显然,单位圆上任意 一点按任意方向旋转一周都回到原来位置,所以点P 与点 T_1 重合,即 $\cos t = \cos t_1$, $\sin t = \sin t_1$. 由单位圆周长 为 2π 可知, $t_1=2\pi+t$,于是 $\cos(2\pi+t)$, $\sin t_1=\sin$ $(2\pi+t)$. 所以 $\cos(2\pi+t)=\cos t$, $\sin(2\pi+t)=\sin t$.

进一步地,"单位圆上任意一点旋转整数周都回 到原来位置"也是显然的,将它翻译为三角函数的性 质,就是诱导公式一:

 $\cos(2k\pi+t)$ =cost, $\sin(2k\pi+t)$ =sin t, 这里 k∈ Z.

3. 圆是最为完美对称的,它既是关于圆心成中心 对称的图形,也是关于任意直径成轴对称的图形.将 这些对称性翻译成三角函数的符号表示,就可以得到 许多三角函数的性质. 例如,单位圆上的动点从A(1,0)出 发,作逆时针旋转,经过时刻t到达点 $P(\cos t, \sin t)$;作 顺时针旋转,经过时刻t到达 $T_2(\cos(-t),\sin(-t))$.则 $P和T_2$ 关于x轴对称,于是有

 $\cos(-t) = \cos t, \sin(-t) = -\sin t.$

称性易知 $\cos(-\alpha) = \cos\alpha, \sin(-\alpha) = -\sin\alpha$.

我们也可以这样来得到三角函数的性质:

设任意角 α 的终边交单位圆于点 $P(\cos\alpha,\sin\alpha)$. (1)作点P关于x轴的对称点 P_1 ,则射线 OP_1 是角 $-\alpha$ 的 终边,所以点 P_1 的坐标是 $P_1(\cos(-\alpha),\sin(-\alpha))$. 由对

(2)作点P关于 γ 轴的对称点 P_2 ,则射线 OP_2 是角 π - α 的终边,所以点 P_2 的坐标是 $P_2(\cos(\pi-\alpha),\sin(\pi-\alpha))$. 由对称性易知

 $\cos(\pi - \alpha) = -\cos\alpha$, $\sin(\pi - \alpha) = \sin\alpha$.

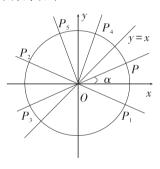
(3)作点P关于原点的对称点P3,则射线OP3是角 π + α 的终边,所以点 P_3 的坐标是 P_3 (cos(π + α),sin(π + α)). 由对称性易知

 $\cos(\pi+\alpha) = -\cos\alpha$, $\sin(\pi+\alpha) = -\sin\alpha$.

(4)作点P关于直线y=x的对称点 P_4 ,则射线 OP_4 是角 $\frac{\pi}{2}$ - α 的终边,所以点 P_4 的坐标是 P_4 (cos($\frac{\pi}{2}$ - α), $\sin(\frac{\pi}{2}-\alpha)$).

另一方面,点 $P(\cos\alpha,\sin\alpha)$ 关于直线y=x的对称 点是 $O_1(\sin\alpha,\cos\alpha)$,所以

$$\cos(\frac{\pi}{2} - \alpha) = \sin\alpha, \sin(\frac{\pi}{2} - \alpha) = \cos\alpha.$$


(5)作点 $P_4(\cos(\frac{\pi}{2}-\alpha),\sin(\frac{\pi}{2}-\alpha))$ 关于y轴的 对称点 P_5 ,则射线 OP_5 是角 $\pi-(\frac{\pi}{2}-\alpha)=\frac{\pi}{2}+\alpha$ 的终 边,所以点 P_{5} 的坐标是 $P_{5}(\cos(\frac{\pi}{2}+\alpha),\sin(\frac{\pi}{2}+\alpha))$.

另一方面,点 $Q_1(\sin\alpha,\cos\alpha)$ 关于 γ 轴的对称点是 $Q_2(-\sin\alpha,\cos\alpha)$,所以

$$\cos(\frac{\pi}{2} + \alpha) = -\sin \alpha, \sin(\frac{\pi}{2} + \alpha) = \cos\alpha.$$

以上诸性质可以用图表示如下:

由诱导公式立即 能得到正弦函数、余弦 函数的奇偶性。如果 把诱导公式所体现的 代数性质与图象的对 称性(几何性质)联系 起来,就可以发现更加 丰富的对称性。例如: $\pm \cos(2k\pi + t) = \cos t$, $\sin t$ $(2k\pi + t) = \sin t$ 可得 x=2kπ都是余弦函数图象

的对称轴,(2kπ,0)都是正弦函数图象的对称中心;又由 $\cos(\frac{\pi}{2} - \alpha) = \sin\alpha, \sin(\frac{\pi}{2} - \alpha) = \cos\alpha$ 可知 $x = 2k\pi + \frac{\pi}{2}$ 都是 正弦函数图象的对称轴, $(2k\pi + \frac{\pi}{2}, 0)$ 都是余弦函数图 象的对称中心; ……

上述研究,不仅使学生获得了诱导公式,而且自 然地把对称、变换等现代数学的核心思想渗透其中, 诱导公式的整体性也得到了很好的体现. 这样处理, 可以让学生体验研究一个数学问题的"味道",从中体 会发现和提出问题的方法,更好地培养学生的系统思 维,落实逻辑思维、理性精神的培养,从而也就更充分 地发挥了诱导公式的育人价值.

定价:16.00元

2017

7-8(下旬)

邮发代号:2-221

小学数学

理论与实践

促进数学程序性知识学习的教学策略设计 对单元教学分析方法的认识与实践

高考研究

2017北京高考理科第18题

学生解题思路和障碍点分析

2017年高考数学浙江卷解析几何题的思考 高三复习研究 透视"三角与平面向量交汇"五大考点

课堂教学研究

"猜想一证明"教学模式在数学教学中的尝试 "平面向量基本定理"的教学实录与反思

"数学探究"教学研究 椭圆中与斜率有关的定值问题 调查研究 高中学生数学阅读能力现状调查研究 信息技术融合 运用信息技术 优化数学育人方式 校园数学文化 核心素养视域下的数学步道建设和实践 数学史趣闻 数学计算与行星发现

问题与争鸣

理性甄选数学阅读材料 有效内化数学核心素养

数形结合思想在解2017年高考题中的应用 三类常考"伴随函数"的性质探究及应用 **【编后漫笔** 诱导公式的育人价值

高

中

ZHONG XIAO XUE SHU XUE

ISSN 2095-4832

中国教育学会主办

邮发代号:2-221

每月25日出版

CN10-1085/O1

ZHONG XIAO XUE SHU XUE —— GAO ZHONG

中小学数学

邮发代号:2-221,每月25日出版 2017年7-8月下旬(高中) (总513期)

> **主管单位** 教育部

主办单位 中国教育学会

编辑出版单位 中小学数学编辑部

项目资助单位

首都师范大学数学科学学院

刊名题字: 苏步青 编委会主任: 张孝达 法人代表: 中国教育学会秘书长 杨念鲁 主 编: 章建跃

王 编: 早建以 副 主 编: 方明一 郭为民 方运加(常务) 高中编辑室

主 编:章建跃(兼)副主编:连四清

小学编辑室 主编:方运加(代)

副主编:彭林梁志斌

初中编辑室

· 編母至 主 编:李海东 副主编:赵学志

高中版理事会会长:江兴代

编委会委员:章建跃 江兴代 陶维林 郭慧清 白 涛 彭 林

责任编辑:左建胜出版设计:赵 波

也 址:北京西三环北路105号 首都师范大学数学楼

邮政编码:100048

电 话:(010)68902789 68410561

手机短信:13520851148 传 真:(010)68902789

度 具:(U1U)089U2/89 网 站:www.zxxsx.cn

网站二维码:

电子信箱:zxxsxgzb@126.com

印 刷:北京荣泰印刷有限公司

发 行:北京报刊发行局 发行范围:公开发行

订 阅:全国各地邮政局(所)

刊 号:

ISSN2095 -4832(国际标准刊号) CN10-1085/O1(国内统一刊号)

目 录

◆理论与实践			
要为形成数学结构和体系而教	••方	厚良	$\xi(1)$
概念教学——落实数学核心素养的有效途径	· 陈	建方	$\vec{\zeta}(4)$
促进数学程序性知识学习的教学策略设计	••方	小芹	(7)
"说数学"在数学习题教学中的实践与反思			
对单元教学分析方法的认识与实践 ···········李宏志	卓	杰	(9)
对单元教学分析方法的认识与实践	谷纟	L霞	(14)
│ ◆ 高考研究			
平和中注重基础 朴实中考查能力 ·······李红春 2017年江苏高考数学试卷评析与启示 ·········· 基于核心素养观的高考题分析及教学运用 ·········	孔	峰	(19)
2017年江苏高考数学试卷评析与启示	·丁ź	於刚	(25)
基于核心素养观的高考题分析及教学运用	毛良	き忠り	(28)
是改头换面,不是面目全非汪贵平	熊	坤	(34)
2017北京高考理科第18题学生解题思路			
和障碍点分析夏繁军 郝俊奎	于明	月辉	(37)
初中视角分析 2017 年浙江高考压轴题 ······			
不落俗套的几何题	施区	川良!	(43)
高考中函数图象的识图与辨图 2017年高考数学浙江卷解析几何题的思考	林目	』红	(45)
2017年高考数学浙江卷解析几何题的思考			
	王3	E 玲((48)
◆高三复习研究			
关注生成过程落实核心素养 ············韩长峰 一道教材练习题的再思考 ····································	卫小	区国	(50)
一道教材练习题的再思考	杨作	影达	(55)
"简单"的内容不简单	张苟	ク科((58)
透视"三角与平面向量交汇"五大考点	李昕	召平	(61)
透视"三角与平面向量交汇"五大考点 辨析"形似质异"的八组函数问题	何思	ふ雄り	(65)
◆课堂教学研究			
落实数学抽象素养应立足课堂、扎根教学······· 多一点设计,长一课经验······	陆	建	(67)
多一点设计,长一课经验	陈す	て谊	(72)
"猜想一证明"教学模式在数学教学中的尝试	孔彤	主涛((74)
"平面向量基本定理"的教学实录与反思	王	辉	(77)
尊重学生理解 构建人本课堂	徐过	生男	(80)
◆"数学探究"教学研究			
关于"探究式教学"选材的几点思考 ····································	李亲	斤华 ((84)
椭圆中与斜率有关的定值问题	肖	南	(88)
解三角形的冉讨论	陈明	を明り	(91)
培育"抽象思维"素养的研究性学习杨兴军	高息	ま霞!	(94)
◆调查研究			
高中学生数学阅读能力现状调查研究	杜き	三国	(97)
◆信息技术融合			
	_		100)
		静(103)
◆校园数学文化			
核心素养视域下的数学步道建设和实践…董毓兴 钅	戋	宁()	106)
◆数学史趣闻			
数学计算与行星发现	木	革(110)
◆问题与争鸣			
理性甄选数学阅读材料 有效内化数学核心素养			
	卡传	美(112)
◆解题研究			
数形结合思相在解 2017 年真老颗山的应用			
一道立体几何题的多视角求解·······陈 余 [夏丽	丽(114)
一道立体几何题的多视角求解	壬宪	伟(117)
高中数学动态问题的解决策略探索陈 余 [诏	天(121)
浅谈两组趣题・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	조昌	厌(:	123)
三类常考"伴随函数"的性质探究及应用…丁春梅	日秀	权(125)
◆编后漫笔			

诱导公式的育人价值 ………………章建跃(封四)

手脑建模型 身心做数学

中小学生学数学新常态——数学实验

数学实验室·数学实验包

提供了数学实验的基本环境和条件

《义务教育数学课程标准(2011年版)》要求有条件的学校可以建立"数学实验室"供学生使用,以拓宽他们的学习领域,培养他们的实践能力,发展其个性品质与创新精神。

教育部教育装备研究与发展中心九年义务教育《"数学实验室"建设》课题组遵循党的十八届三中全会提出的"以促进社会公平正义、增进人民福祉为出发点和落脚点",通过深化数学教育改革,竭力创造条件,让所有的学生,人人拥有课时或机会做数学实验,达到增强他们的社会责任感、创新精神、实践能力的教学目标。

数学实验是中小学生学习数学的重要方式,同美国、德国、以色列、芬兰等西方国家相比,我国正处于学习、引进、实验、拓展阶段,希望有意参与这项数学教育探索的学校和老师加入到这个课题中,我们将提供数学实验室建设、数学实验积学、数学实验研究等便利。你们获得的教学成果会有公开交流、发表、展示的机会。

中国教育学会青少年创新思维教育研究中心将提供教师教学展示的平台、学生学习成果发布的平台:《**中小学数学**》会及时提供版面支持数学实验室建设及教学。

《"数学实验室"建设》课题组将通过《中小学数学》介绍"数学实验室"研究的进展或成果。

中小学数学杂志社地址:北京西三环北路105号首都师范大学数学科学学院(100048)

电话:(010)68902789 68410561 电子信箱:zxxxx@sina.com 手机短信:13520851148